

Snowmass 2021 Advanced Packaging – The New Moore's Law

October 1, 2020 Robert Patti

rpatti@NHanced-semi.com 630-561-6813

End of Old Moore's Law

End of Growth of Single Program Speed?

40 years of Processor Performance

Based on SPECintCPU. Source: John Hennessy and David Patterson, Computer Architecture: A Quantitative Approach, 6/e. 2018

Internet Of Things

More Than Moore

GEORGIA TECH PRC

WHAT IS ADVANCED PACKAGING?

Span of Advanced Packaging

Packaging

Advanced Packaging 100-1,000,000/sqmm

Wafer Fab

IBM

Peripheral I/O

- Flash, DRAM
- CMOS Sensors

100,000,000s/sqmm

Transistor to Transistor

Ultimate goal

Many Choices!

DBI®: Low Temperature Hybrid Bonding Process

Hybrid Bonding Internal Thermo-Compression

Electrical Interconnections without External Pressure Minimizes Stress and Cost of Ownership

Spontaneous Chemical Reaction with Byproducts Diffusing Away from Bond Interface

Hybrid Bonding Interconnect Pitch Scaling

Scalable To < 1um Pitch

1.6 µm DBI® pitch, 300°C

- 3sigma < +/- 1um misalign performance
- Production Minimum pitch = 2.44um
- Best alignment is achieved with face-to-face bonding

Wafer-to-Wafer vs. Die-to-Wafer

Wafer-to-Wafer

- Process implementable in foundry back end of line (BEOL) with a low cost-of-ownership
 - Particle control requirement easily met
 - Proven in many applications
 - CMOS BSI Image Sensors
 - RF switches
- Requires wafer and die sizes to be matched

50um die stacked 4-high, optical and SEM cross-sections

4-high 50um die stacks

4-high cross section

Die bond interface

Die-to Wafer (DBI Ultra)

- Accommodates die tiling, stacking and mismatched die/wafer sizes
- Additional process steps of die singulation and handling required
 - Additional particulate/handling challenges

Die Stack with DBI® Hybrid Bonding

- Improved performance, cost, and yield/reliability potential
 - Throughput no reflow/alloy, throughput improved x2
 - Thermals no underfill, ΔT improved x5/10 for 4/8 high stack
 - Electrical parasitics DBI[®] replaces bumps, RC improved ~ x20
 - Reduced stress eliminate reflow/alloy and underfill
 - Reduced pitch pick/place tool limited, throughput dependent

Hybrid Bonding:

Yield = 80% +/- 20% electrical yield depends on project

- 2 step anneal for SiO2 bonding first and followed by metal-to-metal bonding
- Cu and Ni are used for vertical interconnect bonding metal
- Front-to-front & back-to-front bonding depends on design
- Application for the high density fine pitch vertical interconnect

(a) C-SAM after anneal @350C of wafer bonded with large die size

NHANCED WAS

(b) C-SAM after anneal @350C of wafer bonded with small die size

SiO2 Bonding and Hybrid Bonding for Multi-Wafer Stacking

- 4 wafer stack : SiO2 bonding
- 8 wafer stack: Hybrid bonding
- 16 wafer stack : SiO2 bonding
- 20 wafer stacks : Hybrid bonding
- Currently ~80% of NHanced processed wafers are used for customer "production"

HANCED

SEMICONDUCTORS

(a) Picture of 4 wafer stack bonded using SiO2 bond Top Si has been removed

(b) SEM cross sectional micrograph for 8 device wafer stack

Hybrid Bonding of Heterogeneous Substrate:

Yield = 70% +/- 20% electrical yield depends on project

SEMICONDUCTORS

2.5D Systems

Mixed technology assemblies

Flip-chip

Copper pillar

DBI die to wafer

Organics and silicon circuit boards

Hybrid Bonding of Die-to-Wafer: Yield = 80% +/- 20% electrical yield depends on project

- 2 step anneal for SiO2 bonding first and followed by metal-to-metal bonding
- Cu and Ni are used for vertical interconnect bonding metal
- Pad can be opened on die back or host wafer front.

(a) Die-to-wafer bonding for smaller die: C-SAM and wafer picture

(b) Die-to-wafer bonding for bigger die: C-SAM and wafer picture

Si Interposers

Quilt Packaging

$5 \text{ mm} - 2x1 \text{ Quilt, Thermal Compressed} - 8 \mu\text{m TSV, } 35 \mu\text{m}$ Pitch - Quilt #: NGQ-5-2615-2410

Transfer Printing µChiplet

Source Wafer

Printing ----

Non-native "Target" Substrate

Dispersed micro components

Densely packed micro components

Summary

- Advanced packaging is now driving semiconductors
- There are many options
- Investments of billions of dollars over the last decade+
 - Bought down risks
 - Created more options
- Orders of magnitude lower costs than new node
 - Technology mixing that enables
 - Denser
 - Lower power
 - Lower costs / cost of ownership
 - New directions and possibilities

